Saturday, 4 October 2025

NET 2021 Physics - Vector analysis

The following question appeared in NET 2021 Physics question paper 


Question:

The volume integral   



 is over a region τ bounded by a surface Ʃ ( an infinitesimal area element being

 


 where        is the outward unit normal. If it changes to

 

 

When the vector     is changed to

 

Then 

 can be expressed as


 Option a) 


 

Option b ) 
b) 

Option c) 

c)  


Option d) 



Solution :

Given

 


 As per the given problem 



 changes to


Substituting for 


we get 


which  reduces  to

 

.                                                             

As curl gradient of a scalar function is zero





The above equation can be written as



Hence


Let

                                                    

then


                                                                                                                 …………… (1)

Now using the vector  identity



The first tem of R.H.S becomes zero as    

                                                                 

And curl gradient of a scalar function is zero. Therefore



Substituting  the above equation in equation 1.



Using divergence theorem


Substituting for


 and simplifying



 So option c is the answer. 


 Use links in the top left corner to navigate through the blog.